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For noisy self-sustained oscillators, both reliability, the stability of a response to a noisy driving, and
coherence, understood in the sense of constancy of oscillation frequency, are important characteristics. Al-
though both characteristics and techniques for controlling them have received great attention from researchers,
owing to their importance for neurons, lasers, clocks, electric generators, etc., these characteristics were
previously considered separately. In this paper, a strong quantitative relation between coherence and reliability
is revealed for a limit cycle oscillator subject to a weak noisy driving and a linear delayed feedback, a
convection control tool. The analytical findings are verified and enriched with a numerical simulation for the
Van der Pol–Duffing oscillator.
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Recently, the robustness of response of a limit cycle os-
cillator to a noisy driving has attracted considerable attention
from both experimentalists and theoreticians �1–10�. In dif-
ferent fields of science, related phenomena appear under dif-
ferent names. In neurophysiology the reliability of spiking
neurons, which manifests itself as a coincidence of the re-
sponses of a single neuron to a repeated noisy input of a
prerecorded wave form, attracts great attention �1�. In recent
experiments with a noise-driven neodymium-doped yttrium
aluminum garnet �Nd:YAG� laser �2�, a similar property has
been referred to as consistency. From the theoretical view-
point, reliability and consistency are manifestations of the
synchronization of uncoupled nonlinear oscillators receiving
identical noisy driving �3–10�.

Quantitatively, the stability of response, the reliability, is
characterized by the largest Lyapunov exponent �LE�. For
smooth limit cycle oscillators the LE is negative �3,5,7�,
meaning that the system is reliable. However, a large noise
may lead to a positive LE �3,6,7,11�; and antireliability for
neuronlike systems in a “classic” experimental setup has
even been forecast �9�.

However, for some oscillatory systems not only is the
response stability important, but also the coherence, i.e., the
constancy of the oscillation frequency, which is measured by
the diffusion constant of the oscillation phase. The coherence
determines the precision of clocks �including biological ones
�12��, the quality of electric generators, the susceptibility of
an oscillatory system to external driving �13�, and the pre-
disposition to synchronization; a laser radiation should be
coherent when one needs to focus the beam or redirect it
without angular divergence, etc. In Ref. �13� �followed by
the methodologically closely related Ref. �14�� an extremely
efficient technique for controlling coherence by a weak de-
layed feedback has been proposed and theoretically analyzed
�a successful experimental implementation of this technique
for a laser in the chaotic regime has been reported in Ref.
�15��. Remarkably, due to the time-shift symmetry, a noise-
less limit cycle system is neutrally stable and remains such in
the presence of delayed feedback. But in the presence of
noise the delayed feedback utilized for controlling the coher-
ence may considerably affect the response stability.

It is noteworthy that, in the presence of both delay and
noise �or irregularities�, the process is no longer Markovian;
therefore, one may not apply such well-elaborated tools as

the conventional Fokker-Planck equation, and ad hoc statis-
tical methods are employed for studies �16–19�. This paper
presents both analytical and numerical results on the reliabil-
ity of noise-driven limit cycle oscillators subject to delayed
feedback control, suggesting an effective means for control-
ling the reliability. Analysis of these results in the context of
controlling coherence reveals strong quantitative relations
�Eq. �13�� between the reliability and the coherence. The
disclosed fact, that a high reliability occurs for a weak co-
herence, and vice versa the weaker the reliability the higher
the coherence, imposes important limitations on implemen-
tation of this conventional control technique. Imperfect cases
are also discussed.

In order to demonstrate numerically the relationship be-
tween coherence and reliability, a simulation for a noisy Van
der Pol oscillator,

ẍ − ��1 − x2�ẋ + x = k�ẋ�t − �� − ẋ�t�� + ���t� ,

���t1���t2�� = 2��t1 − t2�, ��� = 0, �1�

has been performed. Here � describes the closeness to the
Hopf bifurcation point, k and � are the feedback strength and
delay time, respectively, � is the noise amplitude, and ��t� is
the normalized white Gaussian noise. In the presence of
noise the oscillation phase �=−arctan�x / ẋ� diffuses accord-
ing to Š���t�− ���t���2

‹�Dt. The diffusion constant D quan-
tifies the coherence of oscillations.

Figure 1 shows the effects of a linear delayed feedback on
the diffusion constant �DC� and the Lyapunov exponent mea-
suring the exponential growth rate of perturbations in the
system �1�. It is noteworthy that not only are the LE and the
DC crucially magnified or suppressed simultaneously when
� /T0 �here T0 is the oscillation period of the control-free
noiseless system� is an integer or half integer, but even their
ratio remains nearly constant as � changes �see Fig. 1�b��.

Let us develop a phase description of the system. One can
parametrize the states of a limit cycle system on the limit
cycle by the oscillation phase � uniformly growing in the
course of temporal evolution. Such an oscillator subject to
weak noise and feedback stays in the vicinity of this cycle,
and its evolution may still be described within the framework
of the conventional phase approximation �20�. Close to the
bifurcation point, i.e., for �→0, the Van der Pol oscillator
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has a nearly circular limit cycle, x0=2 cos �, ẋ0=−2 sin �,
and the phase equation for the system �1� reads �cf. �13��

�̇ = 	0 + ag���t − ��,��t�� + �f���t�� � ��t� , �2�

where 	0=2
 /T0 is the inherent cyclic frequency of the sys-
tem, a=k /2, g=sin���t−��−��t��, the symbol “�” indicates
the Stratonovich form of the equation, and the 2
-periodic
function f��� is the sensitivity to noise. For an additive noise
as in Eq. �1�, f���= �2	0�−1 cos � �cf. �13��, but we keep f
for generality. Note that, in Ref. �18�, Eq. �2� was used to
describe the evolution of the phase of an optical field in a
laser with a weak optical feedback.

For a small perturbation �, one finds

�̇ = a cos���t − �� − ��t�����t − �� − ��t��

+ �f����t����t� � ��t�

�the prime stands for the derivative with respect to the argu-
ment�. Therefore, the instant exponential growth rate ��t�
obeys

��t� = a cos���t − �� − ��t���exp�− 	
t−�

t

��t1�dt1
 − 1�
+ �f����t�� � ��t�; �3�

here we have made use of ��t��exp��t��t1�dt1�. Note that
the LE is the mean value ���.

For further analysis, it is more convenient to consider the
equations in Itô form. Equations �2� and �3� read

�̇ = 	0 + a sin���t − �� − ��t�� + �2f�f + �f���t����t� ,

�4�

��t� = a cos���t − �� − ��t���exp�− 	
t−�

t

��t1�dt1
 − 1�
+ �2f�f + �f����t����t� . �5�

The terms ahead of the noisy ones describe the Stratonovich
drift. Recall that, in Itô form �with the Stratonovich drift
included explicitly�, the instantaneous value ��t� is indepen-
dent of the instantaneous value ��t� taken at the same time
moment t.

Let us explicitly introduce the mean frequency 	 and the

instantaneous frequency deviation v; �	t+, ̇=v, �v�
=0. For a weak noise and a small feedback strength
���1, �a��1� the instantaneous frequency fluctuations are
small �v�1�, and Eqs. �4� and �5� yield, up to the main order
of accuracy,

	 = 	0 − a sin 	� , �6�

v = − a cos 	���t − �� − �t�� + �2f�f + �f��t� , �7�

� = a�cos 	� + sin 	���t − �� − �t���

��exp�− 	
t−�

t

��t1�dt1
 − 1� + �2f�f + �f���t� . �8�

Let us now find the LE. Assuming v and the fluctuating

part �̃ of �, obeying

�̃�t� � − a cos 	�	
t−�

t

�̃�t1�dt1 + �f��	t���t� , �9�

to be Gaussian, one can employ the Furutsu-Novikov for-
mula �21� to obtain from1 Eq. �8�

��� = a cos 	��− ���� + 1/2��	
t−�

t

�̃�t1�dt1
2�� − �2�f�2��

�10�

�here �¯�� stands for the average over the phase ��. The

value I���t−�
t �̃�t1�dt1�2� can be evaluated from Eq. �9�

�similarly to �v�t1�v�t2�� in Ref. �13��:

I = �2�f�2��

�



	

−�

+� � ix

1 − e−ix + a� cos 	��−2

dx

=�2�f�2���
2�

1 + a� cos 	2�
for a� cos 	� � − 1,

2�



� 2

1 + a� cos 	�

8/7

for a� cos 	� � − 1.�
For a��1, Eq. �6� exhibits multistability of the mean fre-
quency 	 �13,17,18�, which results in the violation of the

1Notice that Eq. �8� should not be linearized with respect to �.
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FIG. 1. �Color online� �a� Dependencies of Lyapunov exponent
��� �upper graphs� and diffusion constant D �lower graphs� on delay
time � for the Van der Pol oscillator �1� with �=0.7 subject to white
Gaussian noise of strength �2=0.01 and linear delayed feedback of
strength k=0.06 �squares� and −0.06 �circles�. Oscillation period of
the control-free noiseless system T0�2
 /0.96. The solid lines
present the analytical dependencies �Eqs. �11� and �12��. �b� The
inconstancy of the ratio −��� /D is not resolvable against the back-
ground of the calculation inaccuracy.
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basic assumptions of our analytical theory. Hence, the case
a� cos 	��−1 may be ignored as meaningless, and after
substitution of I Eq. �10� reads

��� = −
�2�f�2��

�1 + a� cos 	��2 , �11�

whereas the DC has been already evaluated in Ref. �13�:

D =
2�2�f2��

�1 + a� cos 	��2 . �12�

Therefore,

−
���
D

=
�f�2��

2�f2��

= const, �13�

which is 1 /2 for f���= �2	0�−1 cos � as for the Van der Pol
system in Fig. 1. Note that, due to the deformation of the
limit cycle at �=0.7, relation �13� is more accurate than Eqs.
�11� and �12� where the term a� cos 	� is specific to g
=sin���t−��−��t�� �see Fig. 1 where −��� /D�0.55�.

While deriving Eqs. �11� and �12�, we nowhere utilized
that the noise is � correlated. Remarkably, the results remain
valid for colored noise, e.g., red noise �see Fig. 2�, the results
for which coincide with those for white noise almost up to
the numerical calculation inaccuracy, and −��red� /Dred
�0.53.

For a strong noise the phase description always leading to
a negative LE is not applicable, and positive LEs have even
been reported �3,6–9�. This case can be treated only numeri-
cally. For this reason, a simulation for the Van der Pol–
Duffing oscillator

ẍ − ��1 − x2�ẋ + x + x3 = k�ẋ�t − �� − ẋ�t�� + ���t� �14�

exhibiting positive LEs for a moderate noise �6� has been
performed. Let us note that for a nonlarge noise �Fig. 3� the
ratio −��� /D is changed by not more than 20%, while the
DC and the LE are changed by a factor �20, in a broad

range of � �the only exception is in the interval �T0 /2,T0�
near the domain where the LE is positive�.

At �=0.374 �Fig. 4�, where the control-free Van der Pol–
Duffing oscillator just becomes unstable �unreliable�,
������=0�0, the linear delayed feedback leads to maximal

positive LEs for integer � /T0 and minimal �not always nega-
tive� LEs for half-integer � /T0. Concerning the interpretation
of the dependence ������, note the following. In the absence
of feedback control, intermittency of epochs of positive and
negative local LEs �“local” means evaluated over a finite
time interval� takes place and the transition to positive LE is
related to a plain quantitative prevalence of the former over
the latter �cf. �9��. The feedback affects �magnifies or sup-
presses� the local LEs over these epochs nonuniformly, thus
shifting the balance between these epochs and bringing about
a domination of positive local LEs for integer � /T0 and nega-
tive ones for half-integer � /T0. For positive “global” LEs,
phase diffusion is owed mainly not to stochasticity but to
chaos �samples of snapshot chaotic attractors �see Ref. �22��
are presented in Fig. 5�. As a result, here the DC is dimin-
ished where the LE is minimal.
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FIG. 2. �Color online� Same dependencies as in Fig. 1 for the
same parameter values but for red Gaussian noise ��t�
=T−1�t−T

t ��t1�dt1 with T=1.2. For notation see caption to Fig. 1.
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FIG. 3. �Color online� �a� Dependencies ������ �upper graph�
and D��� �lower graph� for the Van der Pol–Duffing oscillator �14�
with �=0.2 �T0�2
 /2.02� subject to white Gaussian noise, �
=0.05, and the delayed feedback k=0.06. For description and nota-
tion of �b�, see Fig. 1 caption.
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FIG. 4. �Color online� Same dependencies as in Fig. 3�a� for the
same Van der Pol–Duffing system and feedback strength but a
larger noise, �=0.374.
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Summarizing, for a weak white or colored Gaussian
noise,2 a highly stable response �reliability� to a noisy driv-
ing is observed when phase diffusion is strong �i.e., the co-
herence is weak�. Vice versa, for small diffusion �i.e., highly
coherent oscillations� the response is weakly stable �Figs. 1
and 2, Eq. �13��. In particular, this imposes strong limitations
on the implementation of the technique of coherence im-
provement by virtue of a linear delayed feedback. For in-
stance, in an ensemble of uncoupled identical self-sustained

oscillators synchronized by a common external noisy driv-
ing, small intrinsic noise is always present and leads to
spreading of oscillator phases: ����in /�−��� ��in is the am-
plitude of intrinsic noise; cf. �6��. In such an ensemble the
delayed feedback improvement of the coherence results in a
mutual spreading of oscillator phases which may sometimes
be undesirable.

For a strong noise capable of creating a positive
Lyapunov exponent, i.e., antireliability, the chaotic contribu-
tion to phase diffusion may prevail over the stochastic one,
and then enhanced coherence occurs for the maximal reli-
ability �Fig. 4�.

The detailed calculation of the Lyapunov exponent given
above serves the purpose of disclosing the essentially differ-
ent nature of various contributions to the Lyapunov exponent
and the diffusion constant. However, the final quantitative
effect of delayed feedback on these dissimilar properties of
oscillatory systems somewhat surprisingly turns out to be
identical. The reported phenomenon, valid for a general class
of limit cycle oscillators, is thus neither intuitively expected
nor trivial.
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